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I. INTRODUCTION 

 
In this paper we consider some stability properties of cylindrical liners driven by 

the axial current and compressing a dense plasma (see Refs. 1, 2 and references therein 
for further details). The most dangerous mode is the axisymmetric, m=0, “sausage” mode 
that develops near the outer surface during the acceleration phase and is then fed-through 
to the inner surface, to seed the instability of the plasma-liner interface near stagnation.  
In order to reach a reasonable energy efficiency of the system, it is beneficial to keep the 
magnetic field in the compressed plasma low, so that the magnetic pressure would be 
very small compared to the plasma pressure, and the liner energy would be converted 
mostly to the plasma energy (with that, the field can still be sufficient to suppress radial 
heat losses).  

However, near the liner-plasma interface, the plasma magnetic field is piled up by 
the plasma “cooling flow” directed towards the liner, and a thin layer with a high field, 
where the ratio β of the magnetic pressure to the plasma pressure is ~1, is formed (e.g., 
[2,3]). As the compressed magnetic field is directed predominantly along the axis, this 
“magnetic cushion” would have a stabilizing effect on the m=0 perturbations: these 
perturbations cause bending of the field lines near the wall and thereby create a restoring 
force.  The corresponding stabilizing effect was considered in Ref. [4]. Here we provide 
some quantitative details regarding its magnitude (Sec. II). 

In Sec. III, we consider another aspect of the instability: an effect of volumetric 
density perturbations in the seeding the instability at the acceleration phase. We focus on 
the m=0 mode, as this mode is best studied experimentally [5, 6]. We find a convenient 
universal way of comparing the role of surface perturbations and volumetric 
perturbations.  
 The liner is considered as an incompressible, inviscid fluid. The liner thickness h 
is assumed to be significantly less than the liner radius. As the most dangerous 
perturbations are those with the scale-length smaller than or comparable to the liner 
thickness, one can safely use a planar model, similar to that considered by Harris [7].  
  



II. STABILIZING EFFECT OF THE MAGNETIC CUSHION 
 
 General equations characterizing the stabilization by the magnetic cushion for the 
slowing down liner (near stagnation) have been derived in Ref. [4]. The dimensionless 
dispersion relation reads as: 
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where h and hm are the liner thickness and the thickness of the magnetic cushion, 
respectively,    

! 

q "| kz | h , and Γ is a growth-rate normalized to   

! 

g /h .  This dispersion 
relation shows that, as a function of q, the growth rate first increases, reaches a 
maximum, and then drops to zero [4].  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

In Fig. 1 the impact of the magnetic cushion on the instability is characterized by 
the maximum (over q) growth rate as a function of the plasma beta in the magnetic 
cushion, for several relative thicknesses of the cushion, hm/h. The smallest value, 
hm/h=0.1, corresponds to a virtual absence of the cushion.  However, even for hm/h =0.3, 
and β=2, the maximum growth rate drops by a factor ~ 2 compared to the absence of the 
cushion and higher β.  
 Not affected by the magnetic cushion are the flute perturbations of the inner 
surface (the ones that have no z dependence and, therefore, do not cause bending of the 
axial magnetic field lines).  On the other hand, it is believed that their non-linear 
saturation would occur at lower amplitudes than for the m=0 perturbations. 
 
III. EFFECT OF THE VOLUMETRIC DENSITY PERTURBATIONS 

 
 We focus on the m=0 mode during the acceleration phase. The role of volumetric 
perturbations in seeding the instability has been discussed in conjunction with numerical 
simulations of experiments [5, 6]. Here we provide a simple analytical model, for the 
geometry shown in Fig. 2. 

The dynamics of an incompressible fluid with small initial density perturbations 
δρ<<ρ is described by the equations: 
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Fig. 1. The effect of the magnetic 
cushion on the liner stability near the 
stagnation point. Lower betas and 
larger thicknesses lead to a significant 
increase of the maximum growth rate. 
The parameter b is the ratio of the 
plasma to magnetic field pressure in 
the “cushion.” The growth rate is 

measured in the units of . 
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where ξ  is an infinitesimal displacement of a fluid element with respect to its initial 
position. The linearized continuity equation shows that δρ does not depend on time. The 
density non-uniformity may be caused, for example, by the composition non-uniformity.  

 
 

 
 
 

 
 

Fig. 2. The geometry of the system.  The drive magnetic field is applied in the lower half-space (x<0) and is 
directed towards the viewer. The effective gravity acceleration in the frame co-moving with the liner is 
directed downward. The axis z corresponds to the liner axis in the cylindrical geometry. Shown are 
volumetric density perturbations and the surface waviness that seed the instability.  
 
 The vector g is directed downward. The boundary conditions at the interfaces x=0 
and x=h are (Cf. Refs. [7, 8]): 
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"p # $0 | g |%x = 0  at x=0, h.              (4) 
 Applying Eq. (3) to Eq. (2), one finds that     

! 

"#2$p" | g |$ % & = 0, where prime 
designates the x-derivative. This equation for a single axial mode can be rewritten as 
 ! !!p " kz

2!p = " | g |! !"                (5) 
 An analog of the m=0 mode in the planar geometry is the mode where all the 
quantities depend on time and two of the spatial variables, x and z. For the linear 
perturbations, one can look for the perturbations whose z dependence is exp(ikzz). 
 By solving Eq. (5) with the boundary conditions (4), one can express the pressure 
perturbation in terms of the surface displacements,     

! 

" l # "x x=0  and   
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"u # "x x=h , where the 
subscripts “l” and “u” refer to the lower and upper surfaces (Fig. 1). The result reads as: 
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where x1 is an integration variable. Note that     

! 

F(0) = " F (0) = 0 . Note also that here and 
below we use a shorthand k=kz.  
 Substituting Eq. (6) into Eq. (2) and applying the resulting equation at the points 
x=0, h, one can find the dynamical system that describes the evolution of the two 
surfaces. Before presenting this system, we introduce new variables characterizing the 
surface perturbations: 
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The dynamic equations then acquire the form: 
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To get this set of equations, one has to perform integrations by part in Eq. (7). 
 What is remarkable in the set (9) is that it is exactly the same as that for the 
system without density non-uniformities [7]. All the information about the effect of non-
uniformities is encapsulated in Eqs. (8) relating the real displacements, !l  and !u  to the 

auxiliary ones, !!l  and !!u . If there are no intitial surface perturbations, the initial 

conditions for !!l  and !!u  would be Eqs. (8) with !l (t = 0) = !u(t = 0) = 0 . All the issues of 
the feed-through would then be treated exactly in the same way as for the “standard” 
(without density perturbations) system. Note a detailed discussion of the feed-through 
issues for the “standard” system presented in Ref. [9]. 
 As an example, one can consider the initial value problem for the instability of a 
semi-infinite slab (kh>>1). In this case, the general solution for the instability of the 
interface with a finite initial displacement !l (t = 0) = !0 and zero initial velocity 
!!l (t = 0) = !0  read as: 
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where ! = k | g | . It should be remembered that both !l and !" are actually the k-
components of the Fourier transform of the initial perturbations.  
 In this report, only linear stage of the instability growth was treated. This is why 
the effect of the density perturbations enters the problem via the initial density 
distribution and dose not contain the time dependence. This dependence appears in the 
second order, via the terms like . We leave an analysis of the corresponding constraints as 
well as a detailed comparison with the existing experimental results for future work. 
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